P P SAVANI UNIVERSITY

Sixth Semester of B. Tech. Examination May 2022

SECV3062 Structural Design I

17.05.2022, Tuesday

Time: 09:00 A.M. To 11:30 A.M.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

- Draw the stress diagram for Singly R C Beam also state the condition for ORS, URS and Q-1 Balanced condition and what it signify. Design a singly RCC beam to resist the factored moment of 80 kN*m. Grade of material is Q-2 M25 and Fe415. An RCC beam 250*500~mm in section is reinforced with 4no-18mm dia bar. Is subjected to Q-3 a working shear force of 250 kN. Use M25 conceret and Fe415 steel design shear reinforcement. 7
- Q-4 Design a rectangular beam having ratio and effective span of 4m. Superimposed load acting on beam is 40kN/m. Use M25 and Fe415 grade of material.

SECTION - II

Design a one-way slab for a room having clear dimension of 3m*6.5m, slab is rested on Q-1 10 250mm thick wall. assume necessary data and perform check.

- Design a two-way slab (corner held down condition) for a cabin having in to in dimension of 5m*6m, support width is 230mm. assume necessary data and perform check.
- Q-2 Design a square column to carry axial load of 1500kN. Also determine pitch distance and dia of lateral ties. assume necessary data.
- Q-3 Design a footing for above column if the soil exploration result showed the soil is of loose gravel type. carryout one way shear check.

Type of Rock/soil	IS: 1904–1978	
	t/m ²	kN/m²
I. Rocks		
Hard Sound Rock Laminated rock	330	3240
	165	1620
Residual Deposits of Shattered and Broken Rocks	90	880
4. Soft Rock II. Non-Cohesive Soils**	45	440
1. Compact gravel, sand and gravel	45	440
2. Compact and dry coarse sand	45	440
3. Compact and dry medium sand	25	245
4. Fine sand, silt	15	150
5. Loose gravel or sand	25	245
6. Loose and dy fine sand	10	100

A straight staircase is made of structurally independent tread slabs, cantilevered from a reinforced concrete wall. Given that the riser is 150 mm, tread is 300 mm, and width of

flight is 1.2 m, design a typical tread slab. Apply the live loads specified in the IS Loading Code for stairs liable to be overcrowded. Use M 25 concrete and Fe 250 steel.

Or

The plan of a floor slab system, covering an area $8.0~\text{m} \times 14.5~\text{m}$ (clear spans). The slab rests on a 230 mm thick masonry wall all around. For economy, the span of the slab is reduced by providing three (equally spaced) intermediate beams along the 8.0~m direction, as shown. The specified floor loading consists of a live load of 5~kN/m2, and a dead load (due to floor finish, partitions etc.) of 1~kN/m2 in addition to the self–weight. Assuming Fe 415~steel, design and detail the floor slab. No check required.